A general path for large-scale solubilization of cellular proteins: from membrane receptors to multiprotein complexes.

نویسندگان

  • Filippo Pullara
  • Jennifer Guerrero-Santoro
  • Monica Calero
  • Qiangmin Zhang
  • Ye Peng
  • Henrik Spåhr
  • Guy L Kornberg
  • Antonella Cusimano
  • Hilary P Stevenson
  • Hugo Santamaria-Suarez
  • Shelley L Reynolds
  • Ian S Brown
  • Satdarshan P S Monga
  • Bennett Van Houten
  • Vesna Rapić-Otrin
  • Guillermo Calero
  • Arthur S Levine
چکیده

Expression of recombinant proteins in bacterial or eukaryotic systems often results in aggregation rendering them unavailable for biochemical or structural studies. Protein aggregation is a costly problem for biomedical research. It forces research laboratories and the biomedical industry to search for alternative, more soluble, non-human proteins and limits the number of potential "druggable" targets. In this study we present a highly reproducible protocol that introduces the systematic use of an extensive number of detergents to solubilize aggregated proteins expressed in bacterial and eukaryotic systems. We validate the usefulness of this protocol by solubilizing traditionally difficult human protein targets to milligram quantities and confirm their biological activity. We use this method to solubilize monomeric or multimeric components of multi-protein complexes and demonstrate its efficacy to reconstitute large cellular machines. This protocol works equally well on cytosolic, nuclear and membrane proteins and can be easily adapted to a high throughput format.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Extractability of Inner-Membrane Proteins from Salmonella typhimurium Intact Cells, Spheroplasts and Inner-Membrane Fragments by Non-Denaturing Detergents

The effect of Triton X-100, Na cholate and Tween 80 on the solubilization of integral membrane proteins in intact cells, spheroplasts and inner-membrane fragments of Salmonella typhimurium was studied. The detergents were used in various concentrations (1.6 to 64 mM) and cytochromes b and d were used as marker to monitor the solubilization of membrane-bound proteins. Results showed that no inne...

متن کامل

Arabidopsis leaf plasma membrane proteome using a gel free method: Focus on receptor–like kinases

The hydrophobic proteins of plant plasma membrane still remain largely unknown.  For example in the Arabidopsis genome, receptor-like kinases (RLKs) are plasma membrane proteins, functioning as the primary receptors in the signaling of stress conditions, hormones and the presence of pathogens form a diverse family of over 610 genes. A limited number of these proteins have appeard in pr...

متن کامل

Confinement of β1- and β2-adrenergic receptors in the plasma membrane of cardiomyocyte-like H9c2 cells is mediated by selective interactions with PDZ domain and A-kinase anchoring proteins but not caveolae

The sympathetic nervous system regulates cardiac output by activating adrenergic receptors (ARs) in cardiac myocytes. The predominant cardiac ARs, β(1)- and β(2)AR, are structurally similar but mediate distinct signaling responses. Scaffold protein-mediated compartmentalization of ARs into discrete, multiprotein complexes has been proposed to dictate differential signaling responses. To test th...

متن کامل

Physicochemical and rheological parameters changes for determining the quality of surimi and kamaboko produced by conventional, acid and alkaline solubilization process methods from common kilka (Clupeonella cultriventris caspia)

Physicochemical properties of surimi and kamaboko obtained of solubility in acid, alkaline and conventional methods were compared. The results indicated that the highest protein recovery was related to solubility in acid, alkaline and conventional methods, respectively. The highest removal of lipid and myoglobin was observed by solubility in alkali. Excretion of total pigment and sulfhydryl gro...

متن کامل

Multiprotein signalling complexes: regional assembly on heparan sulphate.

Heparan sulphate (HS) is an abundant component of cell surfaces and the extracellular matrix. It binds to a wide variety of peptide growth factors, morphogens, chemokines and extracellular matrix proteins (e.g. fibronectin) and many of these interactions are essential for these effector proteins to transduce signals across the plasma membrane. The unique molecular design and flexibility of HS a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Protein expression and purification

دوره 87 2  شماره 

صفحات  -

تاریخ انتشار 2013